99热精品69堂国产-97超级碰在线精品视频-日韩欧美中文字幕在线视频-欧美日韩大尺码免费专区-最新国产三级在线不卡视频-在线观看成人免费视频-亚洲欧美国产精品完整版-色综久久天天综合绕视看-中文字幕免费在线看线人-久久国产精品99精品国产

歡迎來到優(yōu)發(fā)表網(wǎng)!

購物車(0)

期刊大全 雜志訂閱 SCI期刊 期刊投稿 出版社 公文范文 精品范文

函數(shù)教學(xué)論文范文

時(shí)間:2022-02-10 15:42:35

序論:在您撰寫函數(shù)教學(xué)論文時(shí),參考他人的優(yōu)秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發(fā)您的創(chuàng)作熱情,引導(dǎo)您走向新的創(chuàng)作高度。

函數(shù)教學(xué)論文

第1篇

關(guān)鍵詞:函數(shù);對(duì)應(yīng);映射;數(shù)形結(jié)合

1要把握函數(shù)的實(shí)質(zhì)

17世紀(jì)初期,笛卡爾在引入變量概念之后,就有了函數(shù)的思想,把函數(shù)一詞用作數(shù)學(xué)術(shù)語的是萊布尼茲,歐拉在1734年首次用f(x)作為函數(shù)符號(hào)。關(guān)于函數(shù)概念有“變量說”、“對(duì)應(yīng)說”、“集合說”等。變量說的定義是:設(shè)x、y是兩個(gè)變量,如果當(dāng)變量x在實(shí)數(shù)的某一范圍內(nèi)變化時(shí),變量y按一定規(guī)律隨x的變化而變化。我們稱x為自變量,變量y叫變量x的函數(shù),記作y=f(x)。初中教材中的定義為:如果在某個(gè)變化過程中有兩個(gè)變量x、y,并且對(duì)于x在某個(gè)范圍內(nèi)的每一個(gè)確定的值,按照某個(gè)對(duì)應(yīng)法則,y都有唯一確定的值與之對(duì)應(yīng),那么y就是x的函數(shù),x叫自變量,x的取值范圍叫函數(shù)的定義域,和x的值對(duì)應(yīng)的y的值叫函數(shù)值,函數(shù)值的集合叫函數(shù)的值域。它的優(yōu)點(diǎn)是自然、形像和直觀、通俗地描述了變化,它致命的弊端就是對(duì)函數(shù)的實(shí)質(zhì)——對(duì)應(yīng)缺少充分地刻畫,以致不能明確函數(shù)是x、y雙方變化的總體,卻把y定義成x的函數(shù),這與函數(shù)是反映變量間的關(guān)系相悖,究竟函數(shù)是指f,還是f(x),還是y=f(x)?使學(xué)生不易區(qū)別三者的關(guān)系。

迪里赫萊(P.G.Dirichlet)注意到了“對(duì)應(yīng)關(guān)系”,于1837年提出:對(duì)于在某一區(qū)間上的每一確定的x值,y都有一個(gè)或多個(gè)確定的值與之對(duì)應(yīng),那么y叫x的一個(gè)函數(shù)。19世紀(jì)70年代集合論問世后,明確把集合到集合的單值對(duì)應(yīng)稱為映射,并把:“一切非空集合到數(shù)集的映射稱為函數(shù)”,函數(shù)是映射概念的推廣。對(duì)應(yīng)說的優(yōu)點(diǎn)有:①它抓住了函數(shù)的實(shí)質(zhì)——對(duì)應(yīng),是一種對(duì)應(yīng)法則。②它以集合為基礎(chǔ),更具普遍性。③它將抽像的知識(shí)以模型并賦予生活化,比如:某班每一位同學(xué)與身高(實(shí)數(shù))的對(duì)應(yīng);某班同學(xué)在某次測試的成績的對(duì)應(yīng);全校學(xué)生與某天早上吃的饅頭數(shù)的對(duì)應(yīng)等都是函數(shù)。函數(shù)由定義域、值域、對(duì)應(yīng)法則共同刻劃,它們相互獨(dú)立,缺一不可。這樣很明確的指出了函數(shù)的實(shí)質(zhì)。

對(duì)于集合說是考慮到集合是數(shù)學(xué)中一個(gè)最原始的概念,而函數(shù)的定義里的“對(duì)應(yīng)”卻是一個(gè)外加的形式,,似乎不是集合語言,1914年豪斯道夫(F.Hausdorff)采用了純集合論形式的定義:如果集合fС{(x,y)|x∈A,y∈B}且滿足條件,對(duì)于每一個(gè)x∈A,若(x,y1)∈f,(x,y2)∈f,則y1=y2,這時(shí)就稱集合f為A到B的一個(gè)函數(shù)。這里f為直積A×B={(x,y)|x∈A,y∈B}的一個(gè)特殊子集,而序偶(x,y)又是用集合定義的:(x,y)={{x},{x,y}}.定義過于形式化,它舍棄了函數(shù)關(guān)系生動(dòng)的直觀,既看不出對(duì)應(yīng)法則的形式,更沒有解析式,不但不易為中學(xué)生理解,而且在推導(dǎo)中也不便使用,如此完全化的數(shù)學(xué)語言只能在計(jì)算機(jī)中應(yīng)用。

2加強(qiáng)數(shù)形結(jié)合

數(shù)學(xué)是人們對(duì)客觀世界定性把握和定量刻畫、逐漸抽像概括、形成方法和理論,并進(jìn)行廣泛應(yīng)用的過程。在7—12年級(jí)所研究的函數(shù)主要是冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和三角函數(shù),對(duì)每一類函數(shù)都是利用其圖像來研究其性質(zhì)的,作圖在教學(xué)中顯得無比重要。我認(rèn)為這一部分的教學(xué)要做到學(xué)生心中有形,函數(shù)圖像就相當(dāng)于佛教教徒心中各種各樣的佛像,只要心中有形,函數(shù)性質(zhì)就比較直觀,處理問題時(shí)就會(huì)得心應(yīng)手。函數(shù)觀念和數(shù)形結(jié)合在數(shù)列及平面幾何中也有廣泛的應(yīng)用。如函數(shù)y=log0.5|x2-x-12|單調(diào)區(qū)間,令t=|x2-x-12|=|(x-?)2-12.25|,t=0時(shí),x=-3或x=4,知t函數(shù)的圖像是變形后的拋物線,其對(duì)稱軸為x=?與x軸的交點(diǎn)是x=-3或x=4并開口向上,其x∈(-3,4)的部分由x軸下方翻轉(zhuǎn)到x軸上方,再考慮對(duì)數(shù)函數(shù)性質(zhì)即可。又如:判定方程3x2+6x=1x的實(shí)數(shù)根的個(gè)數(shù),該方程實(shí)根個(gè)數(shù)就是兩個(gè)函數(shù)y=3x2+6x與y=1/x圖像的交點(diǎn)個(gè)數(shù),作出圖像交點(diǎn)個(gè)數(shù)便一目了然。

3將映射概念下放

就前面三種函數(shù)概念而言,能提示函數(shù)實(shí)質(zhì)的只有“對(duì)應(yīng)說”,如果在初中階段把“變量說”的定義替換成“對(duì)應(yīng)說”的定義,可有以下優(yōu)點(diǎn):⑴體現(xiàn)數(shù)學(xué)知識(shí)的系統(tǒng)性,也顯示出時(shí)代信息,為學(xué)生今后的學(xué)習(xí)作準(zhǔn)備。⑵凸顯數(shù)學(xué)內(nèi)容的生活化和現(xiàn)實(shí)性,函數(shù)是刻畫現(xiàn)實(shí)世界數(shù)量變化規(guī)律的數(shù)學(xué)模型。⑶變抽像內(nèi)容形像化,替換后學(xué)生會(huì)感到函數(shù)概念不再那么抽像難懂,好像伸手會(huì)觸摸到一樣,身邊到處都有函數(shù)。學(xué)生就會(huì)感到函數(shù)不再那么可怕,它無非是一種映射。只需將集合論的初步知識(shí)下放一些即可,學(xué)生完全能夠接受,因?yàn)閺男W(xué)第一學(xué)段就已接觸到集合的表示方法,第二學(xué)段已接觸到集合的運(yùn)算,沒有必要作過多擔(dān)心。以前有人提出將概率知識(shí)下放的觀點(diǎn),當(dāng)時(shí)不也有人得出反對(duì)意見嗎?可現(xiàn)在不也下放到了小學(xué)嗎?如果能下放到初中,就使得知識(shí)體系更完備,銜接更自然,學(xué)生易于接受,學(xué)生就不會(huì)提出“到底什么是函數(shù)?”這樣的問題。

第2篇

(一)案例教學(xué)的內(nèi)涵

對(duì)于案例教學(xué),不同的教育工作者給出了不同的定義,不一而足。筆者認(rèn)為,經(jīng)濟(jì)數(shù)學(xué)的案例教學(xué),是指教師以案例為基本素材,創(chuàng)設(shè)(問題)情境,通過師生、生生間多向互動(dòng),激發(fā)學(xué)生有意義的學(xué)習(xí),使其加深對(duì)基本原理和概念的理解,以達(dá)到建構(gòu)知識(shí)與提高分析、解決問題能力的目的的一種特定的教學(xué)方法,是一種理論與實(shí)際有機(jī)切合的重要教學(xué)形式。

(二)案例應(yīng)用方式分類

依據(jù)案例在經(jīng)濟(jì)數(shù)學(xué)概念(原理)教學(xué)過程中應(yīng)用的方式和出現(xiàn)的位置,可將其分為以下四類。

1.概念(原理)前案例。在進(jìn)入教學(xué)主題之前,先引入若干簡單、特殊的案例,然后以不完全歸納的形式呈現(xiàn)概念(原理)的教學(xué)方式稱為概念(原理)前案例教學(xué)。概念(原理)前案例數(shù)量以二三為宜。如:在導(dǎo)數(shù)(邊際)定義前引入變速直線運(yùn)動(dòng)物體的速度問題、曲線在一點(diǎn)處的切線的斜率問題,在定積分定義前引入曲邊梯形的面積問題等。

2.概念(原理)中案例。通過引入貼合教學(xué)主題、難度適中的案例,隨剖析隨呈現(xiàn)概念(原理)的教學(xué)方式稱為概念(原理)中案例教學(xué)。經(jīng)濟(jì)數(shù)學(xué)中的彈性概念適合概念(原理)中案例教學(xué)。

3.概念(原理)后案例。在呈現(xiàn)概念(原理)后,再拋出相對(duì)較難的案例,以演繹的形式再現(xiàn)或者應(yīng)用概念(原理),以加深學(xué)習(xí)者對(duì)概念(原理)的理解、內(nèi)化、遷移能力的教學(xué)方式稱為概念(原理)后案例教學(xué)。概念(原理)后案例涉及的知識(shí)面比較廣,難度較大,可以分為課上、課下兩部分實(shí)施。課上以教師為主導(dǎo),課下以作業(yè)的形式,促使有興趣的學(xué)生翻閱資料鉆研探索,鍛煉其分析綜合、解決問題的能力。概念(原理)后案例教學(xué)具有普適性。

4.前后呼應(yīng)式案例。在進(jìn)入教學(xué)主題之前,先拋出案例題干激發(fā)學(xué)生的學(xué)習(xí)興趣,而后呈現(xiàn)概念(原理),最后剖析案例,應(yīng)用概念(原理)解決案例的教學(xué)方式稱為前后呼應(yīng)式案例教學(xué)。前后呼應(yīng)式案例教學(xué)適合于復(fù)雜概念(原理),如微分方程理論、差分方程理論、級(jí)數(shù)理論等。

二、分段函數(shù)的案例教學(xué)

例1:快遞收費(fèi)問題。圓通快遞哈爾濱發(fā)深圳收費(fèi)規(guī)定如下:首重1公斤,收費(fèi)13元,續(xù)重每公斤10元。試建立快遞收費(fèi)y(元)與貨物重量x(公斤)之間的函數(shù)關(guān)系。解:y=13,0<x≤113+10(x-1),x>—1例2:郵資問題。國內(nèi)普通信函重量在100克及以內(nèi)的,每重20克(不足20克,按20克計(jì))本埠收費(fèi)0.80元,外埠收費(fèi)1.20元;100克以上部分,每增加100克(不足100克,按100克計(jì))本埠加收1.20元,外埠加收2.00元。試分別建立本外埠郵資與信函重量之間的函數(shù)關(guān)系。

三、總結(jié)

第3篇

所謂數(shù)學(xué)思想方法是對(duì)數(shù)學(xué)知識(shí)的本質(zhì)認(rèn)識(shí),是從某些具體的數(shù)學(xué)內(nèi)容和對(duì)數(shù)學(xué)的認(rèn)識(shí)過程中提煉上升的數(shù)學(xué)觀點(diǎn),他在認(rèn)識(shí)活動(dòng)中被反復(fù)運(yùn)用,帶有普遍的指導(dǎo)意義,是建立數(shù)學(xué)和用數(shù)學(xué)解決問題的指導(dǎo)思想;是在數(shù)學(xué)教學(xué)中提出問題、解決問題過程中,所采用的各種方式、手段、途徑等。掌握數(shù)學(xué)思想方法,就是掌握數(shù)學(xué)的精髓,因此要使學(xué)生領(lǐng)悟、掌握和熟練地使用數(shù)學(xué)思想方法,不是機(jī)械的傳授。下面我就在一次函數(shù)教學(xué)中用到哪些數(shù)學(xué)思想方法談?wù)剛€(gè)人的一些做法:

一、數(shù)形結(jié)合思想方法

“數(shù)無形,少直觀,形無數(shù),難入微”?!皵?shù)形結(jié)合”是數(shù)學(xué)中最重要的,也是最基本的思想方法之一,是解決許多數(shù)學(xué)問題的有效思想。利用“數(shù)形結(jié)合”可使所要研究的問題化難為易,化繁為簡,使抽象變得直觀。如:一次函數(shù)y=-x+5圖象不經(jīng)過哪一象限?解法一:根據(jù)圖象性質(zhì),k<0,b>0過一二四,即不過三象限。解法二:若忘了一次函數(shù)圖象性質(zhì),可做出此函數(shù)的圖象,問題就迎刃而解了。這就是利用了數(shù)形結(jié)合思想方法。

三、分類思想方法

當(dāng)一個(gè)問題因?yàn)槟撤N量的情況不同而有可能引起問題的結(jié)果不同時(shí),需要對(duì)這個(gè)量的各種情況進(jìn)行分類討論,例如一次函數(shù)y=kx+b的圖象經(jīng)過哪幾個(gè)象限,這時(shí)就要分四類討論:

(1)當(dāng)k>0,b>0時(shí),圖象經(jīng)過一二三象限;

(2)當(dāng)k>0,b<0時(shí),圖象經(jīng)過一三四象限;

(3)當(dāng)k<0,b>0時(shí),圖象經(jīng)過一二四象限;

(4)當(dāng)k<0,b<0時(shí),圖象經(jīng)過二三四象限。

三、整體思想方法

整體思想是從問題的整體性質(zhì)出發(fā),突出對(duì)問題的整體結(jié)構(gòu)的分析和改造,發(fā)現(xiàn)問題的整體結(jié)構(gòu)特征,善于用“集成”的眼光,把某些式子或圖形看成一個(gè)整體,把握它們之間的關(guān)聯(lián),進(jìn)行有目的的、有意識(shí)的整體處理。整體思想方法在代數(shù)式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應(yīng)用,整體代入、疊加疊乘處理、整體運(yùn)算、整體設(shè)元、整體處理等都是整體思想方法在解數(shù)學(xué)問題中的具體運(yùn)用。例如:已知y+b與x+a(a,b是常數(shù))成正比例,(1)試說明y是x的一次函數(shù):(2)如是x=3時(shí),y=5,x=2時(shí),y=2,求y與x的函數(shù)關(guān)系式。解決這個(gè)問題(1)時(shí),我們就要把y+b與x+a都看成一個(gè)整體,設(shè)y+b=k(x+a)得出y=kx+ak-b,從而說明y是x的一次函數(shù),解決問題(2)時(shí),當(dāng)我們把握兩組數(shù)值代入解析式y(tǒng)=kx+ak-b中后得到一個(gè)三元二次方程組,顯然不能求出每個(gè)未知數(shù)的值,但我們可以把a(bǔ)k-b看作一個(gè)整體,就可以求出k=3,ak-b=4,從而求出y與x的函數(shù)的關(guān)系式是y=3x-4,在這個(gè)問題中兩次運(yùn)用到整體思想方法。

四、模型思想方法

當(dāng)一個(gè)問題可能與某個(gè)方程建立關(guān)聯(lián)時(shí),可以構(gòu)造方程并對(duì)方程的性質(zhì)進(jìn)行研究以解決這個(gè)問題。如若想找出一次函數(shù)y=kx+b與x軸、y軸交點(diǎn),可根據(jù)點(diǎn)在坐標(biāo)軸上的特征,x軸上的點(diǎn)縱坐標(biāo)為0,即當(dāng)y=0時(shí),x=-b/k,即與x軸交點(diǎn)為(-b/k,0)。y軸上的點(diǎn)橫坐標(biāo)為0,即當(dāng)x=0時(shí),y=b,因此與y軸交點(diǎn)為(0,b)。這就用到了方程這一模型思想方法。

五、類比思想方法

當(dāng)我們要探究一次函數(shù)y=kx+b的圖象及其變化規(guī)律時(shí),由于一次函數(shù)y=kx+b的圖象可以看作是由正比例函數(shù)y=kx的圖象平移|b|個(gè)單位長度而得到的,因而可以利用之前已經(jīng)學(xué)習(xí)正比例函數(shù)y=kx的圖象及其變化規(guī)律類比得出一次函數(shù)y=kx+b的圖象及其變化規(guī)律。

六、特殊與一般思想方法

第4篇

函數(shù)插值理論在數(shù)值分析中是非常重要的一個(gè)知識(shí)點(diǎn),也是離散函數(shù)逼近的重要方法。其原理是利用插值法,可在離散數(shù)據(jù)的基礎(chǔ)上得到一條連續(xù)函數(shù)通過全部已知數(shù)據(jù)點(diǎn),進(jìn)而可以估算出其他節(jié)點(diǎn)處的近似值。插值方法主要有拉格朗日插值、牛頓插值、分段線性插值、樣條插值等,其理論煩瑣,但是又非常重要,它是數(shù)值積分理論的重要理論基礎(chǔ)。插值方法很多,如何在理論和實(shí)驗(yàn)教學(xué)中讓學(xué)生掌握各個(gè)方法的原理,以及每個(gè)插值方法使用的注意事項(xiàng),是擺在教師面前的難題。課堂注重理論,實(shí)驗(yàn)注重做法,在實(shí)驗(yàn)教學(xué)中,筆者認(rèn)為應(yīng)該在加強(qiáng)課堂理論學(xué)習(xí)的基礎(chǔ)上,實(shí)驗(yàn)要注重如何讓學(xué)生鞏固課堂學(xué)習(xí)的成果,把插值的原理和特點(diǎn)通過設(shè)計(jì)的算例讓學(xué)生自己描繪出來。學(xué)生通過實(shí)驗(yàn)全面認(rèn)識(shí)各個(gè)插值理論的優(yōu)缺點(diǎn),為以后數(shù)值積分的學(xué)習(xí)打下基礎(chǔ)。為此,在插值實(shí)驗(yàn)這一節(jié),我們?yōu)閷W(xué)生設(shè)計(jì)了一個(gè)比較實(shí)驗(yàn),通過每一對(duì)有特點(diǎn)的算例的比較,讓學(xué)生在比較中獲得各個(gè)插值方法的使用注意事項(xiàng)和具體的操作方法,知道什么可以做什么不能做,并且獲得對(duì)插值的全新認(rèn)識(shí)。實(shí)驗(yàn)的首要任務(wù)是編程,利用MATLAB數(shù)學(xué)軟件結(jié)合課堂學(xué)到的理論公式編寫拉格朗日插值和牛頓插值的程序。盡管MATLAB有內(nèi)置的命令實(shí)現(xiàn)拉格朗日插值,但是學(xué)生無法通過內(nèi)置命令掌握拉格朗日插值理論公式,并且由于通過MATLAB編程實(shí)現(xiàn)拉格朗日插值和牛頓插值比較容易,所以還是要求學(xué)生通過理論公式獨(dú)立編程,以加深對(duì)理論公式的記憶和理解。在編程的基礎(chǔ)上,要求學(xué)生利用編寫的程序完成以下對(duì)比實(shí)驗(yàn)。

1.從函數(shù)y=sin(x),x∈(-2π,2π)中等距離取5個(gè)點(diǎn),要求學(xué)生分別利用拉格朗日插值和牛頓插值進(jìn)行求插值函數(shù)的操作

觀察利用兩個(gè)插值原理求出來的插值函數(shù)有何異同。2.從多項(xiàng)式y(tǒng)=x4+x3+x2+x+1中等距離取5個(gè)點(diǎn),要求學(xué)生利用拉格朗日插值方法進(jìn)行插值操作,觀察獲得的插值函數(shù)和原函數(shù)有何異同。3.提示學(xué)生對(duì)函數(shù)y=sin(x),x∈(-2π,2π)的5點(diǎn)拉格朗日插值效果不好,若要提高插值效果,將節(jié)點(diǎn)個(gè)數(shù)增加到11個(gè),將插值效果進(jìn)行比較。4.在上例的基礎(chǔ)上,讓學(xué)生通過畫圖比較函數(shù)f(x)=11+25x2,x∈(-1,1)的5點(diǎn)拉格朗日插值和11點(diǎn)拉格朗日插值效果。提示學(xué)生可以進(jìn)一步增加節(jié)點(diǎn)個(gè)數(shù),觀察得出的圖形。5.利用分段插值的方法,對(duì)函數(shù)(fx)=11+25x2,x∈(-1,1)進(jìn)行11點(diǎn)插值,與11點(diǎn)拉格朗日插值的插值效果比較。6.保留拉格朗日插值方法,取消等距節(jié)點(diǎn),提示學(xué)生利用[-1,1]上的切比雪夫多項(xiàng)式的零點(diǎn)(切比雪夫點(diǎn))xk=cos(2k-1)π2(n+1)--,k=1,2,…,n+1對(duì)以上兩個(gè)函數(shù)進(jìn)行拉格朗日插值,與等距節(jié)點(diǎn)的插值效果進(jìn)行比較。我們希望學(xué)生做完以上案例后不但能順利完成結(jié)果的獲得,而且還能利用課堂學(xué)到的理論知識(shí)分析得到的結(jié)果,這些結(jié)果都是課堂上講解的理論知識(shí)的數(shù)值例子,能做出來,會(huì)分析,這是對(duì)學(xué)生的鍛煉,也能提高學(xué)生的動(dòng)手能力和學(xué)習(xí)積極性。以下我們對(duì)以上案例進(jìn)行分析。1.通過案例1,學(xué)生得到結(jié)果后能了解到,在相同的節(jié)點(diǎn)條件下,利用拉格朗日插值和牛頓插值得到的插值多項(xiàng)式是一樣的,這與課堂的理論分析完全一致。這個(gè)結(jié)果是學(xué)生自己完成實(shí)驗(yàn)后得到的,與課堂理論分析結(jié)合,學(xué)生更能理解兩種插值的相同之處。而通過編寫兩個(gè)插值方法的MATLAB程序,學(xué)生既可以學(xué)習(xí)編程,還可以掌握兩者達(dá)到同一目的的不同之處。

2.通過上例可得出拉格朗日插值和牛頓插值結(jié)果

一樣的結(jié)論,所以對(duì)四次多項(xiàng)式y(tǒng)=x4+x3+x2+x+1進(jìn)行5點(diǎn)插值只需利用拉格朗日插值即可。學(xué)生可通過得到的結(jié)果和圖形知道,其實(shí)得到的插值多項(xiàng)式就是原來的四次多項(xiàng)式本身,原函數(shù)和插值多項(xiàng)式兩者的誤差為零。這個(gè)結(jié)論可以提示學(xué)生通過拉格朗日插值理論的誤差公式解釋和分析,從而復(fù)習(xí)和掌握拉格朗日插值誤差公式。

3.通過案例1得到的插值多項(xiàng)式的圖形對(duì)比原函數(shù)圖形

一般來說函數(shù)的5點(diǎn)插值的逼近效果還是不理想的,誤差比較大。若要提高逼近效果,首先讓學(xué)生通過實(shí)驗(yàn)觀察提高節(jié)點(diǎn)個(gè)數(shù)對(duì)插值的逼近效果的影響。所以設(shè)計(jì)了一個(gè)對(duì)比實(shí)驗(yàn)讓學(xué)生對(duì)兩個(gè)函數(shù)進(jìn)行高次插值。通過實(shí)驗(yàn)結(jié)果的觀察可知,對(duì)于函數(shù)y=sin(x),x∈(-2π,2π),11點(diǎn)的插值逼近效果在整個(gè)區(qū)間上都比5點(diǎn)插值效果好,幾乎和原函數(shù)重合了提高插值次數(shù)達(dá)到了良好的效果。而對(duì)于龍格函數(shù)f(x)=11+25x2,x∈(-1,1),高次插值出現(xiàn)了龍格現(xiàn)象,即區(qū)間中間部分逼近效果非常好,而區(qū)間兩邊出現(xiàn)非常大的震蕩。通過這兩個(gè)案例的比較分析,讓學(xué)生自己總結(jié)出光靠增加節(jié)點(diǎn)個(gè)數(shù)提高插值的逼近效果不可行,需要另找辦法。龍格現(xiàn)象是插值理論的重要知識(shí)點(diǎn),在課堂教學(xué)中學(xué)生對(duì)該現(xiàn)象只停留在理論上,通過該實(shí)驗(yàn)案例的分析,學(xué)生在自己做出龍格現(xiàn)象圖形的時(shí)候,能加深對(duì)龍格現(xiàn)象和拉格朗日插值的缺點(diǎn)的理解。而對(duì)于學(xué)生普遍會(huì)存在疑問,龍格現(xiàn)象只是龍格函數(shù)的特有現(xiàn)象嗎?y=sin(x),x∈(-2π,2π)不會(huì)出現(xiàn)龍格現(xiàn)象嗎?可提示學(xué)生繼續(xù)對(duì)沒有出現(xiàn)龍格現(xiàn)象的函數(shù)增加插值節(jié)點(diǎn),觀察龍格現(xiàn)象是否是所有函數(shù)的共有特點(diǎn),并且這可以留作實(shí)驗(yàn)作業(yè)讓學(xué)生課后自己完成。

4.此案例提供一個(gè)提高逼近效果的方法,就是分段插值

利用分段插值,可以在增加節(jié)點(diǎn)個(gè)數(shù)的情況下,保持插值次數(shù)不增加,從而保證的插值效果。學(xué)生通過此案例可以理解為什么介紹完整體插值后還需要講解分段插值,老師在以后介紹數(shù)值積分中的復(fù)化積分公式的時(shí)候,進(jìn)行比較講解。5.通過切比雪夫點(diǎn)的插值案例,提示學(xué)生分段插值不是提高逼近效果的唯一方法,通過改變節(jié)點(diǎn)的選取,把原來的等距節(jié)點(diǎn)變?yōu)閰^(qū)間上正交多項(xiàng)式的零點(diǎn),可以在增加節(jié)點(diǎn)個(gè)數(shù),讓拉格朗日插值的逼近效果也相應(yīng)提高而不會(huì)出現(xiàn)龍格現(xiàn)象。這個(gè)案例可以和以后數(shù)值積分中的高斯求積公式配合,讓學(xué)生了解正交多項(xiàng)式的零點(diǎn)在函數(shù)逼近方面的重要應(yīng)用。并且在介紹完[-1,1]上的切比雪夫點(diǎn)插值后,可以預(yù)留作業(yè),讓學(xué)生在其他區(qū)間上尋找正交多項(xiàng)式零點(diǎn)進(jìn)行拉格朗日插值,讓學(xué)生對(duì)正交多項(xiàng)式理論加深印象,為以后數(shù)值積分的高斯求積公式的介紹鋪墊。

二、結(jié)束語

第5篇

一、教材分析

1、教材的地位和作用:

函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中學(xué)生對(duì)函數(shù)概念理解的程度會(huì)直接影響數(shù)學(xué)其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。

2、教學(xué)目標(biāo)及確立的依據(jù):

教學(xué)目標(biāo):

(1)教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。

(2)能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力。

(3)德育滲透目標(biāo):使學(xué)生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。

教學(xué)目標(biāo)確立的依據(jù):

函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)生學(xué)好其他的數(shù)學(xué)內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。

3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):

教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。

教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。

重點(diǎn)難點(diǎn)確立的依據(jù):

映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的學(xué)生來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來高考有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。

二、教材的處理:

將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使學(xué)生真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。

三、教學(xué)方法和學(xué)法

教學(xué)方法:講授為主,學(xué)生自主預(yù)習(xí)為輔。

依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為學(xué)生能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。學(xué)法:四、教學(xué)程序

一、課程導(dǎo)入

通過舉以下一個(gè)通俗的例子引出通過某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。

例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問,通過“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?

二.新課講授:

(1)接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生總結(jié)歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:AB,及原像和像的定義。強(qiáng)調(diào)指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對(duì)應(yīng)法則f。進(jìn)一步引導(dǎo)學(xué)生總結(jié)判斷一個(gè)從A到B的對(duì)應(yīng)是否為映射的關(guān)鍵是看A中的任意一個(gè)元素通過對(duì)應(yīng)法則f在B中是否有唯一確定的元素與之對(duì)應(yīng)。

(2)鞏固練習(xí)課本52頁第八題。

此練習(xí)能讓學(xué)生更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。

例1.給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個(gè)簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)A、B是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得A中的任何一個(gè)元素在集合B中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對(duì)應(yīng)法則f),并說明把函f:AB記為y=f(x),其中自變量x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{f(x):x∈A}叫做函數(shù)的值域。

并把函數(shù)的近代定義與映射定義比較使學(xué)生認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。

再以讓學(xué)生判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):

2.函數(shù)是非空數(shù)集到非空數(shù)集的映射。

3.f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。

4.f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。

5.集合A中的數(shù)的任意性,集合B中數(shù)的唯一性。

6.“f:AB”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域A(要優(yōu)先),值域C(上函數(shù)值的集合且C∈B)。

三.講解例題

例1.問y=1(x∈A)是不是函數(shù)?

解:y=1可以化為y=0*X+1

畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。

[注]:引導(dǎo)學(xué)生從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。四.課時(shí)小結(jié):

1.映射的定義。

2.函數(shù)的近代定義。

3.函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。

4.函數(shù)近代定義的五大注意點(diǎn)。

五.課后作業(yè)及板書設(shè)計(jì)

第6篇

關(guān)鍵詞:抽象函數(shù);定義域;值域;對(duì)稱性

抽象函數(shù)是一種重要的數(shù)學(xué)概念。我們把沒有給出具體解析式,其一般形式為y=f(x),且無法用數(shù)字和字母的函數(shù)稱為抽象函數(shù)。由于抽象函數(shù)的問題通常將函數(shù)的定義域、值域、單調(diào)性、奇偶性、周期性和圖像集于一身。這類問題考查學(xué)生對(duì)數(shù)學(xué)符號(hào)語言的理解和接受能力、對(duì)一般和特殊關(guān)系的認(rèn)識(shí)以及數(shù)學(xué)的綜合能力。

解決抽象函數(shù)的問題要求學(xué)生基礎(chǔ)知識(shí)扎實(shí)、抽象思維能力、綜合應(yīng)用數(shù)學(xué)能力較高。所以近幾年來高考題中不斷出現(xiàn),在2009年的全國各地高考試題中,抽象函數(shù)遍地開花。但學(xué)生在解決這類問題時(shí)常常感到束手無策、力不從心。下面通過例題全面探討抽象函數(shù)主要考查的內(nèi)容及其解法。

一、抽象函數(shù)的定義域

例1已知函數(shù)f(x)的定義域?yàn)閇1,3],求出函數(shù)g(x)=f(x+a)+f(x-a)(a>0)的定義域。

解析:由由a>0

知只有當(dāng)0<a<1時(shí),不等式組才有解,具體為{x|1+a<x≤3-a;否則不等式組的解集為空集,這說明當(dāng)且僅當(dāng)0<a<1時(shí),g(x)才能是x的函數(shù),且其定義域?yàn)椋?+a,3-a]。

點(diǎn)評(píng):1.已知f(x)的定義域?yàn)閇a,b],則f[g(x)]的定義域由a≤g(x)≤b,解出x即可得解;2.已知f[g(x)]的定義域?yàn)閇a,b],則f(x)的定義域即是g(x)在x[a,b]上的值域。

二、抽象函數(shù)的值域

解決抽象函數(shù)的值域問題——由定義域與對(duì)應(yīng)法則決定。

例2若函數(shù)y=f(x+1)的值域?yàn)閇-1,1]求y=(3x+2)的值域。

解析:因?yàn)楹瘮?shù)y=f(3x+2)中的定義域與對(duì)應(yīng)法則與函數(shù)y=f(x+1)的定義域與對(duì)應(yīng)法則完全相同,故函數(shù)y=f(3x+2)的值域也為[-1,1]。

三、抽象函數(shù)的奇偶性

四、抽象函數(shù)的對(duì)稱性

例3已知函數(shù)y=f(2x+1)是定義在R上的奇函數(shù),函數(shù)y=g(x)的圖像與函數(shù)y=f(x)的圖像關(guān)于y=x對(duì)稱,則g(x)+g(-x)的值為()

A、2B、0C、1D、不能確定

解析:由y=f(2x+1)求得其反函數(shù)為y=,y=f(2x+1)是奇函數(shù),y=也是奇函數(shù),。,,而函數(shù)y=g(x)的圖像與函數(shù)y=f(x)的圖像關(guān)于y=x對(duì)稱,g(x)+g(-x)=故選A。

五、抽象函數(shù)的周期性

例4、(2009全國卷Ⅰ理)函數(shù)的定義域?yàn)镽,若與都是奇函數(shù),則()

(A)是偶函數(shù)(B)是奇函數(shù)

(C)(D)是奇函數(shù)

解:與都是奇函數(shù)

函數(shù)關(guān)于點(diǎn),及點(diǎn)對(duì)稱,函數(shù)是周期的周期函數(shù).,,即是奇函數(shù)。故選D

定理1.若函數(shù)y=f(x)定義域?yàn)镽,且滿足條件f(x+a)=f(x-b),則y=f(x)是以T=a+b為周期的周期函數(shù)。

定理2.若函數(shù)y=f(x)定義域?yàn)镽,且滿足條件f(x+a)=-f(x-b),則y=f(x)是以T=2(a+b)為周期的周期函數(shù)。

定理3.若函數(shù)y=f(x)的圖像關(guān)于直線x=a與x=b(a≠b)對(duì)稱,則y=f(x)是以T=2(b-a)為周期的周期函數(shù)。

定理4.若函數(shù)y=f(x)的圖像關(guān)于點(diǎn)(a,0)與點(diǎn)(b,0),(a≠b)對(duì)稱,則y=f(x)是以T=2(b-a)為周期的周期函數(shù)。超級(jí)秘書網(wǎng)

定理5.若函數(shù)y=f(x)的圖像關(guān)于直線x=a與點(diǎn)(b,0),(a≠b)對(duì)稱,則y=f(x)是以T=4(b-a)為周期的周期函數(shù)。

性質(zhì)1:若函數(shù)f(x)滿足f(a-x)=f(a+x)及f(b-x)=f(b+x)(a≠b,ab≠0),則函數(shù)f(x)有周期2(a-b);

性質(zhì)2:若函數(shù)f(x)滿足f(a-x)=-f(a+x)及f(b-x)=-f(b+x),(a≠b,ab≠0),則函數(shù)有周期2(a-b).

特別:若函數(shù)f(x)滿足f(a-x)=f(a+x)(a≠0)且f(x)是偶函數(shù),則函數(shù)f(x)有周期2a.

性質(zhì)3:若函數(shù)f(x)滿足f(a-x)=f(a+x)及f(b-x)=-f(b+x)(a≠b,ab≠0),則函數(shù)有周期4(a-b).

特別:若函數(shù)f(x)滿足f(a-x)=f(a+x)(a≠0)且f(x)是奇函數(shù),則函數(shù)f(x)有周期4a。

從以上例題可以發(fā)現(xiàn),抽象函數(shù)的考查范圍很廣,能力要求較高。但只要對(duì)函數(shù)的基本性質(zhì)熟,掌握上述有關(guān)的結(jié)論和類型題相應(yīng)的解法,則會(huì)得心應(yīng)手。

第7篇

關(guān)鍵詞:指數(shù)函數(shù);教學(xué)設(shè)計(jì);教學(xué)案例;多媒體;有效教學(xué)

指數(shù)函數(shù)是高中數(shù)學(xué)的重點(diǎn)內(nèi)容之一,從教學(xué)要求看,一是理解指數(shù)函數(shù)的定義;二是掌握指數(shù)函數(shù)的圖像與性質(zhì)。下面是筆者在公開教學(xué)中對(duì)指數(shù)函數(shù)教學(xué)設(shè)計(jì)的三處改進(jìn)。

案例一:新課引入的改進(jìn)

(一)原始設(shè)計(jì)

1.復(fù)習(xí)舊知:

②函數(shù)y=x的定義域是

2.引入新課:師問:函數(shù)y=()與函數(shù)y=x,從形式上看有什么不同?生答:從形式上看,前者指數(shù)是自變量,后者底數(shù)是自變量。(引入課題)

(二)改進(jìn)設(shè)計(jì)

1.創(chuàng)設(shè)情境:有人說,將一張白紙對(duì)折50次以后,其厚度超過地球到月球的距離,你認(rèn)為可能嗎?設(shè)白紙每張厚度為0.01mm,已知地球到月球的距離約為380000千米。

對(duì)折的層數(shù)y與對(duì)折次數(shù)x的函數(shù)關(guān)系式是什么?設(shè)紙的原面積為1,對(duì)折后紙的面積z與對(duì)折次數(shù)x又有什么關(guān)系?(y=2x,z=()x)

2.提出問題:師問:能發(fā)現(xiàn)y=2x,z=()x的共同點(diǎn)嗎?

學(xué)生思考片刻,教師提示:從形式上,有什么共同點(diǎn)?并用紅粉筆標(biāo)出指數(shù)x。

生答:指數(shù)x是自變量,底數(shù)是大于0且不等于1的常數(shù)。(引入課題)

(三)教學(xué)反思

凱洛夫的“五環(huán)節(jié)”教學(xué)理論:“復(fù)習(xí)舊課—導(dǎo)入新課—講授新課—鞏固—作業(yè)”目前還深深地影響著我們的教學(xué)。但如果總是這樣一成不變,就顯得呆板與程式化。我們現(xiàn)在上課總喜歡說:“今天我們學(xué)習(xí)……”。教師不說,學(xué)生不問,教師怎么講,學(xué)生就怎么學(xué)。我們知道,數(shù)學(xué)來源于生活,又應(yīng)用于實(shí)踐。在原始設(shè)計(jì)中,先復(fù)習(xí)與新授知識(shí)相關(guān)的內(nèi)容,然后再從實(shí)際引入新課,與教材編排相一致,這樣就數(shù)學(xué)講數(shù)學(xué),顯得枯燥無味,很難調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣。為此,從學(xué)生感興趣的一個(gè)生活實(shí)例出發(fā),引起學(xué)生注意與爭議,教師再創(chuàng)設(shè)實(shí)際問題情境,就激發(fā)了學(xué)生的學(xué)習(xí)興趣,牢牢地吸引了學(xué)生的注意力,增強(qiáng)了學(xué)生的求知欲望,強(qiáng)化了學(xué)生內(nèi)在的學(xué)習(xí)需求,巧妙地導(dǎo)入了新課。

案例二:多媒體使用的改進(jìn)

(一)原始設(shè)計(jì)

1.電腦作圖:教師用多媒體演示y=2x、y=()x的作圖過程。

2.觀察猜想:教師引導(dǎo)學(xué)生觀察y=2x、y=()x的圖像,猜想y=3x的圖像形狀。

3.電腦驗(yàn)證:教師用幾何畫板做出y=3x的圖像,驗(yàn)證猜想。

4.歸納猜想:由特殊到一般,給出指數(shù)函數(shù)的圖像分為01兩類,并用多媒體演示它們的圖像特征和性質(zhì)。

(二)改進(jìn)設(shè)計(jì)

1.學(xué)生作圖:在教師的指導(dǎo)下學(xué)生分組后用幾何畫板作y=2x、y=()x的圖像。然后,讓學(xué)生在電腦上作y=3x,y=5xy=10x,y=0.2x,y=0.7x等函數(shù)的圖像,并對(duì)圖像形狀的變化加以觀察與討論。

2.猜想形狀:讓學(xué)生猜想函數(shù)y=8x,y=0.3x的圖像形狀,師生討論,并列出有關(guān)觀察結(jié)論。

3.分組探究1:一般地指數(shù)函數(shù)的圖像大致有幾類(幾種走勢)?

4.分組探究2:分別滿足什么條件的指數(shù)函數(shù)圖像大致是圖1、圖2?

5.電腦驗(yàn)證:用幾何畫板作y=ax(a>0且a≠1)圖像,任意改變a的值,展示底變化對(duì)圖像的影響。

(三)教學(xué)反思

原始設(shè)計(jì),多媒體演示放在猜想之后,僅僅起了一個(gè)驗(yàn)證的作用,體現(xiàn)不了計(jì)算機(jī)輔助教學(xué)的目的,有點(diǎn)畫蛇添足,成了一種花架子。

改進(jìn)之后,按照“動(dòng)手操作—?jiǎng)?chuàng)設(shè)情境—觀察猜想—驗(yàn)證證明”的思路設(shè)計(jì),首先電腦作圖,為學(xué)生觀察、交流創(chuàng)設(shè)情境;然后,引導(dǎo)學(xué)生深入細(xì)致地觀察圖像,學(xué)生在相互爭論、研討的過程中進(jìn)行民主交流,傾聽他人意見,分享研究成果,猜想出圖像分兩種情形;最后,再用多媒體驗(yàn)證猜想。這樣設(shè)計(jì)符合學(xué)生的認(rèn)知規(guī)律和思維習(xí)慣,激發(fā)了學(xué)生的求知欲,增強(qiáng)了學(xué)習(xí)的自信心,張揚(yáng)了學(xué)生的個(gè)性,順利地解決了這一教學(xué)難點(diǎn)。

我們在使用計(jì)算機(jī)輔助教學(xué)時(shí),千萬不要忘記“輔助”二字,輔助在不用多媒體教學(xué)時(shí)的難點(diǎn)處,輔助在點(diǎn)子上,而不能為了用多媒體而用多媒體。案例三:指數(shù)函數(shù)的性質(zhì)發(fā)現(xiàn)過程的改進(jìn)

(一)原始設(shè)計(jì)

1.師生作圖:教師作y=2x的圖像,以作示范。然后學(xué)生模仿作y=()x的圖像,以鞏固作圖方法。

2.電腦演示:教師用多媒體演示y=2x、y=()x的作圖過程。

3.觀察特征:教師引導(dǎo)學(xué)生觀察上述兩個(gè)圖像的特征,并推廣到一般情形。

4.歸納性質(zhì):根據(jù)圖像特征,寫出它們的性質(zhì)。

(二)改進(jìn)設(shè)計(jì)

在前面學(xué)生分組用多媒體做出y=2x,y=()x,y=3x,y=5x,y=10x,y=0.2x,y=0.7x等函數(shù)圖像的基礎(chǔ)上,教師引導(dǎo)學(xué)生觀察、討論、歸納得出性質(zhì)。

1.自主觀察:對(duì)一般的指數(shù)函數(shù),圖像有哪些特征?

2.分組討論:學(xué)生分組討論后,展示討論的結(jié)果。除得到圖像的一般特征,更值得一提的是,有的學(xué)生還說出了函數(shù)y=2x與y=()x的圖像關(guān)于y軸對(duì)稱等特征。

3.歸納性質(zhì):根據(jù)圖像特征,寫出它們的性質(zhì)。

4.作示意圖:根據(jù)指數(shù)函數(shù)的性質(zhì),教師讓學(xué)生作出y=8x,y=0.6x等函數(shù)圖像的示意圖。

師:觀察與猜想是一種感性認(rèn)識(shí),并不表示結(jié)論一定正確,還需要進(jìn)行理性證明……

(三)教學(xué)反思

新課程標(biāo)準(zhǔn)指出:要改變課程實(shí)施過于強(qiáng)調(diào)接受學(xué)習(xí)、死記硬背、機(jī)械訓(xùn)練的現(xiàn)象,倡導(dǎo)主動(dòng)學(xué)習(xí)、樂于探究,勤于動(dòng)手,培養(yǎng)學(xué)生搜集和處理信息的能力、獲取新知識(shí)的能力、分析解決問題的能力及交流合作的能力。因此,教師要把學(xué)習(xí)過程中的發(fā)現(xiàn)、探究、研究等認(rèn)知活動(dòng)突顯出來,使學(xué)習(xí)過程更多地成為學(xué)生發(fā)現(xiàn)問題、研究問題及解決問題的過程。

上述兩種設(shè)計(jì)都注重讓學(xué)生從事有意義的數(shù)學(xué)活動(dòng),都涉及了學(xué)生的探索活動(dòng)和經(jīng)常使用的研究方法,如從特殊到一般,再由一般到特殊,類比、聯(lián)想、猜想等。

原始設(shè)計(jì)在實(shí)際教學(xué)中,活動(dòng)缺乏內(nèi)在聯(lián)系,加上教師的束縛,活動(dòng)單一,學(xué)生得出圖像分兩類顯得較為生硬,接著研究的一般情形又似乎來得“突然”,從特例到一般情形并未起到搭橋引渡的作用,形成了一個(gè)認(rèn)知難點(diǎn)。這樣的設(shè)計(jì)沒有真正發(fā)揮學(xué)生的主體作用,實(shí)際上還是教師主導(dǎo)著課堂,牽著學(xué)生走,還是在教知識(shí)、教教材,是一種主導(dǎo)性教學(xué)模式。

改進(jìn)后,改變了教學(xué)方法,教師放棄了全程主導(dǎo),把學(xué)習(xí)的主動(dòng)權(quán)交給了學(xué)生,由他們自己去觀察、去發(fā)現(xiàn),在學(xué)生交流、研討、互動(dòng)的過程中,學(xué)生觀察深入,思維活躍,富有創(chuàng)造性。教師則以學(xué)生伙伴的角色參與學(xué)生的認(rèn)知學(xué)習(xí),在與學(xué)生的互動(dòng)交流中指導(dǎo)學(xué)生,并積極地關(guān)注、傾聽學(xué)生的交流。這樣設(shè)計(jì)符合學(xué)生的認(rèn)知規(guī)律和思維習(xí)慣,為學(xué)生營造了安全的心理環(huán)境,學(xué)生非常順利地學(xué)習(xí)了指數(shù)函數(shù)的性質(zhì),而且學(xué)生覺得這些思想方法是非常自然的,可以學(xué)到手且以后能用得上,為今后的學(xué)習(xí)作了必要的鋪墊,這是一種典型的指導(dǎo)性教學(xué)模式。

學(xué)生是學(xué)習(xí)的主人,自主學(xué)習(xí)是他們的天然權(quán)利,任何硬性灌輸和強(qiáng)制訓(xùn)練都是侵犯學(xué)生學(xué)習(xí)的行為。

參考文獻(xiàn):

[1]羅文杰.指數(shù)函數(shù)的教學(xué)設(shè)計(jì)[J].廣東教育,2007,(7):205-207.