Journal Title:Fractals-complex Geometry Patterns And Scaling In Nature And Society
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.
過去幾十年,對涉及復(fù)雜幾何、圖案和縮放的現(xiàn)象的研究經(jīng)歷了驚人的發(fā)展和應(yīng)用。在這相對較短的時(shí)間內(nèi),幾何和/或時(shí)間縮放已被證明代表了許多過程的共同方面,這些過程發(fā)生在異常多樣化的領(lǐng)域,包括物理、數(shù)學(xué)、生物、化學(xué)、經(jīng)濟(jì)學(xué)、工程和技術(shù)以及人類行為。通常,現(xiàn)象的復(fù)雜性質(zhì)體現(xiàn)在底層的復(fù)雜幾何中,在大多數(shù)情況下,可以用非整數(shù)(分形)維數(shù)的對象來描述。在其他情況下,事件隨時(shí)間或其他各種量的分布顯示出特定的縮放行為,從而更好地理解決定給定過程的相關(guān)因素。
在相關(guān)的理論、數(shù)值和實(shí)驗(yàn)研究中使用分形幾何和縮放作為語言,可以更深入地了解以前難以解決的問題。除其他外,通過應(yīng)用諸如尺度不變性、自親和性和多重分形性等概念,人們對增長現(xiàn)象、湍流、迭代函數(shù)、膠體聚集、生物模式形成、股票市場和非均質(zhì)材料有了更好的理解。
該期刊專門針對上述現(xiàn)象,其主要挑戰(zhàn)在于其跨學(xué)科性質(zhì);我們致力于匯集這些領(lǐng)域的最新發(fā)展,以便各種方法和科學(xué)觀點(diǎn)在自然和社會的復(fù)雜空間和時(shí)間行為上進(jìn)行富有成效的互動。
Fractals-complex Geometry Patterns And Scaling In Nature And Society創(chuàng)刊于1993年,由World Scientific Publishing Co. Pte Ltd出版商出版,收稿方向涵蓋數(shù)學(xué) - 數(shù)學(xué)跨學(xué)科應(yīng)用全領(lǐng)域,此刊是中等級別的SCI期刊,所以過審相對來講不是特別難,但是該刊專業(yè)認(rèn)可度不錯(cuò),仍然是一本值得選擇的SCI期刊 。平均審稿速度 12周,或約稿 ,影響因子指數(shù)3.3,該期刊近期沒有被列入國際期刊預(yù)警名單,廣大學(xué)者值得一試。
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
數(shù)學(xué) | 3區(qū) | MULTIDISCIPLINARY SCIENCES 綜合性期刊 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學(xué)跨學(xué)科應(yīng)用 | 2區(qū) 3區(qū) | 否 | 否 |
名詞解釋:
中科院分區(qū)也叫中科院JCR分區(qū),基礎(chǔ)版分為13個(gè)大類學(xué)科,然后按照各類期刊影響因子分別將每個(gè)類別分為四個(gè)區(qū),影響因子5%為1區(qū),6%-20%為2區(qū),21%-50%為3區(qū),其余為4區(qū)。
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
數(shù)學(xué) | 2區(qū) | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學(xué)跨學(xué)科應(yīng)用 | 2區(qū) | 否 | 否 |
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
數(shù)學(xué) | 2區(qū) | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學(xué)跨學(xué)科應(yīng)用 MULTIDISCIPLINARY SCIENCES 綜合性期刊 | 2區(qū) 3區(qū) | 否 | 否 |
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
數(shù)學(xué) | 1區(qū) | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學(xué)跨學(xué)科應(yīng)用 MULTIDISCIPLINARY SCIENCES 綜合性期刊 | 2區(qū) 3區(qū) | 是 | 否 |
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
數(shù)學(xué) | 2區(qū) | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學(xué)跨學(xué)科應(yīng)用 MULTIDISCIPLINARY SCIENCES 綜合性期刊 | 2區(qū) 3區(qū) | 否 | 否 |
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
數(shù)學(xué) | 1區(qū) | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學(xué)跨學(xué)科應(yīng)用 MULTIDISCIPLINARY SCIENCES 綜合性期刊 | 1區(qū) 2區(qū) | 是 | 否 |
按JIF指標(biāo)學(xué)科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學(xué)科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | SCIE | Q1 | 19 / 135 |
86.3% |
學(xué)科:MULTIDISCIPLINARY SCIENCES | SCIE | Q1 | 29 / 134 |
78.7% |
按JCI指標(biāo)學(xué)科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學(xué)科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | SCIE | Q1 | 7 / 135 |
95.19% |
學(xué)科:MULTIDISCIPLINARY SCIENCES | SCIE | Q1 | 18 / 135 |
87.04% |
名詞解釋:
WOS即Web of Science,是全球獲取學(xué)術(shù)信息的重要數(shù)據(jù)庫,Web of Science包括自然科學(xué)、社會科學(xué)、藝術(shù)與人文領(lǐng)域的信息,來自全世界近9,000種最負(fù)盛名的高影響力研究期刊及12,000多種學(xué)術(shù)會議多學(xué)科內(nèi)容。給期刊分區(qū)時(shí)會按照某一個(gè)學(xué)科領(lǐng)域劃分,根據(jù)這一學(xué)科所有按照影響因子數(shù)值降序排名,然后平均分成4等份,期刊影響因子值高的就會在高分區(qū)中,最后的劃分結(jié)果分別是Q1,Q2,Q3,Q4,Q1代表質(zhì)量最高。
CiteScore | SJR | SNIP | CiteScore排名 | ||||||||||||||||
7.4 | 0.673 | 0.913 |
|
名詞解釋:
CiteScore:衡量期刊所發(fā)表文獻(xiàn)的平均受引用次數(shù)。
SJR:SCImago 期刊等級衡量經(jīng)過加權(quán)后的期刊受引用次數(shù)。引用次數(shù)的加權(quán)值由施引期刊的學(xué)科領(lǐng)域和聲望 (SJR) 決定。
SNIP:每篇文章中來源出版物的標(biāo)準(zhǔn)化影響將實(shí)際受引用情況對照期刊所屬學(xué)科領(lǐng)域中預(yù)期的受引用情況進(jìn)行衡量。
是否OA開放訪問: | h-index: | 年文章數(shù): |
未開放 | 36 | 327 |
Gold OA文章占比: | 2021-2022最新影響因子(數(shù)據(jù)來源于搜索引擎): | 開源占比(OA被引用占比): |
39.15% | 3.3 | 0.38... |
研究類文章占比:文章 ÷(文章 + 綜述) | 期刊收錄: | 中科院《國際期刊預(yù)警名單(試行)》名單: |
99.69% | SCIE | 否 |
歷年IF值(影響因子):
歷年引文指標(biāo)和發(fā)文量:
歷年中科院JCR大類分區(qū)數(shù)據(jù):
歷年自引數(shù)據(jù):
2023-2024國家/地區(qū)發(fā)文量統(tǒng)計(jì):
國家/地區(qū) | 數(shù)量 |
CHINA MAINLAND | 317 |
USA | 38 |
Malaysia | 36 |
Pakistan | 26 |
Mexico | 22 |
Saudi Arabia | 22 |
Iran | 19 |
Taiwan | 19 |
India | 17 |
Turkey | 15 |
2023-2024機(jī)構(gòu)發(fā)文量統(tǒng)計(jì):
機(jī)構(gòu) | 數(shù)量 |
MONASH UNIVERSITY | 33 |
CHINA UNIVERSITY OF MINING & TEC... | 32 |
CHINA UNIVERSITY OF PETROLEUM | 28 |
NINGBO UNIVERSITY | 18 |
CHINA MEDICAL UNIVERSITY TAIWAN | 17 |
CHINA UNIVERSITY OF GEOSCIENCES | 17 |
JIANGSU UNIVERSITY | 16 |
HUAZHONG UNIVERSITY OF SCIENCE &... | 15 |
SUZHOU UNIVERSITY | 14 |
AMIRKABIR UNIVERSITY OF TECHNOLO... | 13 |
近年引用統(tǒng)計(jì):
期刊名稱 | 數(shù)量 |
FRACTALS | 557 |
INT J HEAT MASS TRAN | 125 |
PHYSICA A | 123 |
PHYS REV E | 92 |
CHAOS SOLITON FRACT | 63 |
J MATH ANAL APPL | 56 |
PHYS REV LETT | 54 |
FUEL | 53 |
NATURE | 52 |
ADV MATH | 45 |
近年被引用統(tǒng)計(jì):
期刊名稱 | 數(shù)量 |
FRACTALS | 557 |
PHYSICA A | 136 |
J PETROL SCI ENG | 47 |
THERM SCI | 42 |
FLUCT NOISE LETT | 38 |
FUEL | 36 |
ENERGIES | 32 |
REP PROG PHYS | 29 |
CHAOS SOLITON FRACT | 28 |
ENTROPY-SWITZ | 24 |
近年文章引用統(tǒng)計(jì):
文章名稱 | 數(shù)量 |
FRACTAL CALCULUS AND ITS APPLICA... | 41 |
PATTERN RECOGNITION OF MINE MICR... | 41 |
A REMARK ON WANG'S FRACTAL VARIA... | 38 |
FRACTAL DERIVATIVE MODEL FOR TSU... | 35 |
THE HOSOYA INDEX OF GRAPHS FORME... | 24 |
FRACTALS AND CHAOS CHARACTERISTI... | 22 |
STUDY ON THE FEATURE OF ELECTROM... | 21 |
PHYSICAL INSIGHT OF LOCAL FRACTI... | 18 |
KOZENY-CARMAN CONSTANT FOR GAS F... | 16 |
ELECTROOSMOTIC FLOW IN TREE-LIKE... | 14 |
同小類學(xué)科的其他優(yōu)質(zhì)期刊 | 影響因子 | 中科院分區(qū) |
Differential And Integral Equations | 1.8 | 4區(qū) |
Algebra And Logic | 0.4 | 3區(qū) |
Mathematics | 2.3 | 3區(qū) |
Aims Mathematics | 1.8 | 3區(qū) |
Mathematical Notes | 0.6 | 4區(qū) |
Journal Of The Royal Statistical Society Series C-applied Statistics | 1 | 4區(qū) |
Theory And Practice Of Logic Programming | 1.4 | 2區(qū) |
Communications On Pure And Applied Mathematics | 3.1 | 1區(qū) |
Fractal And Fractional | 3.6 | 2區(qū) |
Applied Mathematics And Computation | 3.5 | 2區(qū) |
若用戶需要出版服務(wù),請聯(lián)系出版商:WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224。